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Abstract
This paper describes a new method to recover the

sign of the local Gaussian curvature at each point on the
visible surface of a 3-D object. Multiple (p > 3) shaded
images are acquired under different conditions of illu-
mination. The required information is extracted from
a 2-D subspace obtained by applying Principal Com-
ponents Analysis (PCA) to the p-dimensional space of
normalized irradiance measurements.
The number of dimensions is reduced from p to 2

by considering only the first two principal components.
The sign of the Gaussian curvature is recovered based
on the relative orientation of measurements obtained
on a local five point test pattern to those in the 2-D sub-
space, called the Eigen plane. The method does assume
generic diffuse reflectance. The method recovers the
sign of Gaussian curvature without assumptions about
the light source directions or about the specific func-
tional form of the diffuse surface reflectance.
Multiple (p > 3) light sources minimize the effect of

shadows by allowing a larger area of visible surface to be
analyzed. Results are demonstrated by experiments on
synthetic and real data. The results are more accurate
and more robust compared to previous approaches.

1 Introduction

Surface curvature is a useful local descriptor of 3-D
object shape since it is viewpoint invariant. In com-
puter vision, surface curvature is used for a wide range
of tasks including shape recovery, shape modeling, seg-
mentation, object recognition, scene analysis and pose
determination.

Local surface curvature can be represented by the
values (and associated directions) of the two principal
curvatures. Another measure is the Gaussian curvature
which is equal to the product of the two principal curva-
tures. The sign of the Gaussian curvature alone can be
useful for specific tasks like segmentation. Several re-

cent papers[1]-[5] describe methods to recover the sign
of the Gaussian curvature from p = 3 images acquired
under different conditions of illumination. This paper
proposes a new method to recover the sign of the Gaus-
sian curvature directly from multiple (p > 3) images.

The required information is extracted from a 2-D
subspace obtained by applying Principal Components
Analysis (PCA) to the p-dimensional space of normal-
ized irradiance measurements. The number of dimen-
sions is reduced from p to 2 by considering only the
first two principal components. The sign of the Gaus-
sian curvature is recovered based on the relative orien-
tation of measurements obtained on a local five point
test pattern to those in the 2-D subspace, called the
Eigen plane. The method does assume generic diffuse
reflectance. The method recovers the sign of Gaussian
curvature without assumptions about the light source
directions or about the specific functional form of the
diffuse surface reflectance. Results are demonstrated
by experiments on synthetic and real data.

2 The Three Light Source Case

In the three light source case, the three irradiance
measurements obtained at each pixel are denoted by
(E1, E2, E3), where E1, E2 and E3 are considered to
define the axes of a 3-D right-handed coordinate sys-
tem. For a Lambertian surface with constant albedo,
Woodham [6] showed that scatter plot of measure-
ments, (E1, E2, E3), define a 6-degree-of-freedom ellip-
soid. This ellipsoid does not depend on the shape of the
object in view nor on the relative orientation between
object and viewer. Angelopoulou [4] showed that scat-
ter plots for a variety of diffuse surfaces with constant
albedo, including surfaces with varying degrees of sur-
face roughness, remain ellipsoid-like in that they have
positive Gaussian curvature everywhere.

Angelopoulou [4] also showed that the scatter plot
for a surface with multiple distinct albedos gives mul-
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Figure 1. Scatter plot on Eigen Plan from 16
Images for a Lambertian Sphere

tiple distinct ellipsoid-like shapes that differ only in
scale.

Following [4], we use normalization to remove the
effect of varying albedo. Let
E′ = (E1/‖E‖, E2/‖E‖, E3/‖E‖). Then, the scatter
plot of E′ values produces a normalized ellipsoid-like
shape in (E1, E2, E3) space. Normalization, as defined
here, extends in the obvious way to the p-dimensional
case.

3 Sign of the Gaussian Curvature

3.1 Mapping onto the 2-D Eigen Plane

Let Υ be the standard mapping from the unit sur-
face normal at a point on a smooth object to the asso-
ciated point on the Gaussian sphere. For given condi-
tions of illumination, letΦ be the mapping from a point
on the Gaussian sphere to the p-dimensional space of
normalized irradiance measurements. For suitably il-
luminated points, Φ is invertible since the p-tuple of
image irradiances is different for each different surface
normal.

The surface normal itself has only two degrees of
freedom. The novel idea is to use Principal Com-
ponents Analysis (PCA) to reduce the dimensional-
ity of the space of measurements. Each point in the
p-dimensional space of the normalized irradiances is
mapped into the 2-dimensional subspace by a transfor-
mation denoted by Ψ. Ψ selects the first two principal
components of the original measurements. We call this
2-dimensional subspace the Eigen plane. The essen-
tial observation is that the Eigen plane preserves the
regularity of points on the Gaussian sphere. This is
sufficient to recover the sign of Gaussian curvature, as
will be shown.

3.2 Sign of the Transformation

The overall transformation from surface point to
Eigen plane is given by Ψ ◦ Φ ◦ Υ. Let the first and
second principal components define the axes of a right-
handed 2-D coordinate system for the Eigen plane.

Consider the special case of three light sources and
a test object that is a sphere. Define a five point lo-
cal image template consisting of a center point and top,
bottom, left and right neighbours. Label the five points
as: ©0 for the center point,©1 for the top neighbour,©2 ,

©3 and©4 for the right, bottom and left neighbours re-
spectively (in clockwise order). Given a test object that
is a sphere, the corresponding points on the Eigen plane
will appear either in clockwise or counter-clockwise or-
der.

All coordinate systems are assumed to be the right-
handed coordinate systems. For the three light source
case, the points©0 to©4 map into a 3-D space of nor-
malized image irradiances. Further, let’s project those
normalized image irradiances onto the plane in E1, E2,
E3 space through the origin that is perpendicular to
the vector (1,1,1). The points ©1 to ©4 will map onto
this plane in a clockwise order if the three light source
directions themselves are in counter-clockwise order
with respect to the viewing direction. Alternatively,
they will map onto this plane in a counter-clockwise
order if the three light source directions are in clock-
wise order. Thus, the preservation or reversal of the
clockwise ordering depends explicitly on the ordering
of the light source directions with respect to the view-
ing direction. Without loss of generality, assume that
the light sources directions are given in clockwise order
with respect to the viewing direction (so that discus-
sion about reversals owing to light source ordering can
be avoided).

The transformation Ψ may or may not preserve the
clockwise ordering of the points©1 to©4 when they are
mapped to the Eigen plane. When Ψ preserves the
clockwise ordering, we call it a “positive transforma-
tion.” When Ψ reverses the clockwise ordering, we
call it a “negative transformation.”

With p light sources, the ordering of©1 to©4 depends
both on the ordering of the light source directions and
on Ψ. As above, we assume that the light sources
directions are given in clockwise order with respect to
the viewing direction. The definition of Ψ as a positive
or negative transformation remains unchanged.

For a given imaging situation, it is sim-
ple to test whether Ψ defines a positive or a
negative transformation. Let e1, e2, · · · , ep be
(1, 0, · · · , 0)T , (0, 1, 0, · · · , 0)T , · · · , (0, 0, · · · , 1)T respec-
tively. Suppose Ψmaps e1, e2, · · · , ep to e

′
1, e

′
2, · · · , e

′
p

respectively. The distribution of e
′
1, e

′
2, · · · , e′

p deter-
mines whether Ψ is a positive or negative transforma-
tion. With the light sources given in counter-clockwise
order, Ψ is a positive transformation if e

′
1, e

′
2, · · · , e

′
p

appear in counter-clockwise order. Conversely, Ψ is
a negative transformation if e

′
1, e

′
2, · · · , e

′
p appear in

clockwise order. [ASIDE: if the light sources are given
in clockwise order then the sense is simply reversed.
That is, Ψ is positive if e

′
1, e

′
2, · · · , e

′
p appear in clock-

wise order and negative if they appear in counter-
clockwise order]

3.3 Procedure

Table 1 shows how to recover the sign of the Gaus-
sian curvature from the orientation of local test points
on the Eigen plane. As before, let the five local points
on the image be labeled©0 for the center point,©1 for
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Table 1. How to determine the sign of Gaussian
curvature from distribution of local points on
the Eigen plane

Ψ

positive trans. negative trans.

clockwise G > 0 G < 0
line or a point G = 0 G = 0

counterclockwise G < 0 G > 0

its upper point,©2 ,©3 and©4 for the other three points
oriented clockwise. Suppose Ψ is a positive transfor-
mation. If ©1 to ©4 map onto the Eigen plane in a
clockwise manner then G > 0. If©1 to©4 map onto the
Eigen plane in a counter-clockwise manner then G < 0.
Conversely, suppose Ψ is a negative transformation. If
©1 to©4 map onto the Eigen plane in a clockwise man-
ner then G < 0. If ©1 to©4 map onto the Eigen plane
in a counter-clockwise manner then G > 0. Regardless
of whether Ψ is positive or negative, if©1 to©4 map to
a line or a point in the Eigen plane then G = 0.

4 Experiments
4.1 Simulated Example

We use a 2-D sinc function (Eq.(1)) as a test sur-
face. Lambertian reflectance is assumed. Eight light
source directions are used. One of the eight synthe-
sized images is shown in Figure 2-(a). For the exam-
ple, α = 3. Each image is 256×256 pixels. Gray lev-
els are quantized to 256 values. The albedo (i.e., the
constant parameter C in the image irradiance equa-
tion E = C cos i) takes on two values, C = 255 and
C = 150 (square areas in Figure 2-(a)). Each image is
synthesized under the assumption that the zenith angle
of the direction of illumination is 18[deg]. Local four
neighboring points are taken two pixels apart around
the center pixel.

f(x, y) = α · sinx

x
· siny

y
(−2π < x, y < 2π) (1)

The estimated results are shown in Figure 2-(b).
Figure 2-(c) shows the theoretically calculated result
for comparison purposes. The pointwise accuracy for
this example is 97.1 %. The results also demonstrate
that varying albedo is handled correctly. The 2.9 % er-
ror occurs at the boundary between positive and neg-
ative Gaussian curvature (i.e., where G is near zero).
Values obtained near points of zero Gaussian curva-
ture map to nearby locations in the Eigen plane. This
causes the method sometimes to misjudge the orienta-
tion of these points leading to errors in the digitized
result.

The method successfully estimates the sign of Gaus-
sian curvature even when the light source directions
are not widely dispersed. A close arrangement of light
source directions results in a high level of correlation
between each image. But, PCA is effective in these cir-
cumstances leading to robust estimation nevertheless.

(a) (b) (c)

(d) (e)

: G > 0
: G = 0
: G < 0

Figure 2. (a) Shaded image (b) Result (c) The-
oretical result (d) Result by [3] and (e) Result
by [4]
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Figure 3. Graph of accuracy versus the number
of light sources

We also compare our method to two other meth-
ods, [3] and [4]. Both other methods use three light
sources. For the comparison, each image also is syn-
thesized under the assumption that the zenith angle of
the direction of illumination is 18[deg]. Figure 2-(d)
shows a result of method [3] and Figure 2-(e) shows
that of [4]. The accuracies are 92.4 % and 91.6 % re-
spectively. Recall that the accuracy for our method
using all 8 images (Figure 2-(b)) is 97.1 %.

Figure 3 graphs the accuracy of our method as a
function of the number of light sources used. The
graph demonstrates the improvement associated with
increasing the number of light sources, and therefore
the number of images, used.

4.2 Real Examples

A pottery doll is used for experiments on real data.
Fifteen light source directions are used. Images are
acquired for two different zenith angles of illumination,
8 with a zenith angle of 12.36[deg] and seven with a
zenith angle of 16.95[deg].

Three different test poses of the doll are shown in
Figure 4. Measurement conditions for each pose are the
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(a) doll 1 (b) doll 2 (c) doll 3

Figure 4. Shaded images of test object

(a) doll 1 (b) doll 2 (c) doll 3

Figure 5. Results of dolls

same. Each image is 512×512 pixels. Gray levels are
quantized to 256 values. Local four neighboring points
are taken in the similar manner as the simulation.

The estimated results are shown in Figure 5. The
theoretically correct result is not known. But, qualita-
tively the estimated sign of Gaussian curvature appears
both correct and robust. Figure 5 demonstrates that
the result is indeed viewpoint invariant (i.e., indepen-
dent of pose). The method works for almost the entire
visible surface, including points in cast shadow areas
such as are found under the jaw and under the hat
brim. In general, cast shadows create difficulties for
the methods based on only three light sources [3][4].

Finally, a second doll (which has varying albedo) is
tested. Measurement conditions are identical to those
for the examples in Figure 4.

The result is shown in Figure 6-(b). Varying albedo
is handled correctly. The estimated sign of the Gaus-
sian curvature appears qualitatively correct except in
areas around the lips and boots where the evident spec-
ularities deviate from the general diffuse reflectance as-
sumed.

5 Conclusion

This paper described a new method to recover the
sign of local Gaussian curvature directly from multiple
shaded images. Generic diffuse reflectance is assumed.
Principal components analysis is used to reduce a high
demensional problem to one of only two dimensions.

The sign of Gaussian curvature is obtained by com-
paring the relative orientation of five local test points
in the image to that of the same points mapped onto
the 2-D Eigen plane. This is accomplished without any
specific model of diffuse surface reflectance and with-
out specific information about the direction of the light
sources.

(a) (b)

Figure 6. (a) Another test object with multiple-
albedo and (b) Result

Previous approaches used three light sources. Here,
a larger number of light sources (and therefore a larger
number of images) are used. Increased accuracy and
robustness have been demonstrated, even when the
light source directions are not widely dispersed. Spa-
tially varying albedo also is handled correctly.

Specularities do cause the method to fail. (This is
true for the other methods cited too [3][4].) Estimating
the actual values of surface curvature from multiple im-
ages acquired under different conditions of illumination
is possible [6] but this does require additional knowl-
edge of the specific reflectance function and measure-
ment conditions involved.
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