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Abstract 
An implementation of photometric stereo is de-  

scribed in which all directions of illumination are close 
to  the viewing direction. This has practical importance 
but creates a numerical problem that is ill-conditioned. 
Ill-conditioning is dealt with in two ways. First, many 
more than the theoretical minimum number of required 
images are acquired. Second, principal components 
analysis (PCA) is used as a linear preprocessing tech- 
nique to extract a reduced dimensionality subspace t o  
use as input. Overall, the approach is empirical. The 
ability of a radial basis function (RBF) neural net- 
work to do non-parametric functional approximation 
is exploited. One network maps image irradiance to 
surface normal. A second network maps surface nor- 
mal to image irradiance. The two networks are trained 
using samples from a calibration sphere. Comparison 
between the actual input and the inversely predicted in- 
put is used as a confidence estimate. Results on real 
data are demonstrated. 

1 Introduction 
Shape-from-shading, originally formulated by 

Horn [l, 21, is the problem of determining surface 
shape from the smooth shading present in a single 
image. Photometric stereo was introduced by Wood- 
ham [3] as a method to determine surface orientation 
locally using multiple images of an object surface ac- 
quired from a single viewpoint under different con- 
ditions of illumination. These early approaches, and 
others that followed, exploit principles of optics as a 
source of radiometric constraint. 

In recent years, theoretical aspects of shape-from- 
shading and photometric stereo have dominated the 
literature arguably at the expense of practical aspects. 
Much of the theoretical work reported considers only 
the case of Lambertian reflectance. Unfortunately, this 
has served to convince potential implementors that 
the approach is of little practical significance. Within 
the “physics-based vision” community, serious atten- 
tion now is paid to reflectance models [4, 51. Clearly, 
this work is fundamental. But, it has not yet proven 
decisive in leading to practical applications. 

Key factors limiting practical application of photo- 
metric stereo include shadows and interreflection and 

the reality of measurement situations in which the 
range of available illumination directions is restricted. 
One trade-off is clear. The greater the difl‘erence in 
the directions of illumination, the better conditioned 
is the estimation of surface orientation. On the other 
hand, the greater the difference in the directions of 
illumination, the greater is the number of visible sur- 
face points that fail to be commonly illuminated and 
hence fail to support any estimation of surface orienta- 
tion. Further, for non-convex surfaces, directions of il- 
lumination different from the viewing direction exacer- 
bate the problem caused by shadows cast onto surface 
points that would otherwise be commonly illuminated. 
Shadows cause image measurements to be darker than 
expected. Interreflection causes image measurements 
to be brighter than expected. Photometric stereo is 
subject to error in the presence of cast shadows and 
interreflection. No purely local technique can succeed 
since these phenomena are inherently non-local. Nev- 
ertheless, in most cases, one can locally detect the pres- 
ence of cast shadows and interreflection by exploiting 
the data redundancy in photometric stereo [6]. Fi- 
nally, in tasks ranging from ocular surgery, mining, 
sub-sea exploration and mobile robotics, there often 
are restrictions on the range of available illumination 
directions as well as a requirement to keep the entire 
sensing system as physically compact as possible. This 
suggests the need to develop techniques to deal with il- 
lumination directions nearly collinear with the viewing 
direction. If this can be done, it also has the advantage 
of minimizing regions affected by shadows. 

Woodham has developed implementations of pho- 
tometric stereo in which the reflectance function is 
determined empirically using a calibration object of 
known shape, typically a sphere. No explicit assump- 
tions need to be made either about light source di- 
rections or about the functional form of surface re- 
flectance. It is sufficient that the calibration sphere 
and subsequent test objects be viewed under the same 
conditions of illumination and be made of the same 
material (i.e., have the same reflectance properties). 
In this way, a material with any reflectance charac- 
teristic can be handled, provided that the necessary 
calibration can be done. Empirical calibration has the 
added benefit of automatically compensating for the 
transfer characteristics of the sensor. In [6], the non- 
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linear mapping between image irradiance and surface 
orientation was represented explicitly in a lookup ta- 
ble (LUT). This allowed near real-time implementa- 
tion of three light source photometric stereo on full 
frame video data at near video frame rates (,i.e., 
The implementation used commercially available har - 
ware. Of course, should a good physical reflectance 
model be available for the given application, it can be 
retrofit to the method for implementation purposes. 
Calibration may still be required, however, to estimate 
the unknown parameters of the reflectance model [7],  
including the direction(s) to the light source(s). 

Iwahori has pursued neural network implemen- 
tations of photometric stereo. In [8], a particular 
functional model of specular reflectance was assumed 
and the neural network was used to estimate the un- 
known parameters in what overall remained a para- 
metric method. In [9], a neural network implementa- 
tion was used for direct comparison with the lookup 
table (LUT) implementation described in [6]. The 
comparison was favourable indicating that a neural 
network implementation is a viable alternative to an 
explicit LUT. 

The idea of moving light source photometric stereo 
has previously been explored for a variety of light 
source configurations under the assumption of Lam- 
bertian and other reflectance models [ lo ,  11, 12, 131. 
Not surprisingly, it was observed that, with only small 
movements of the light source, standard photomet- 
ric stereo becomes ill-conditioned. For this reason, it 
seemed difficult to realize implementations based on a 
single moving light source. Nevertheless, the potential 
advantage was clear and we were motivated to explore 
further. 

The novel idea in this paper is to use princi- 
pal components analysis (PCA) in conjunction with 
a neural network to successfully implement photomet- 
ric stereo for the case of a moving, nearby light source. 
It is shown that PCA can overcome the fact that with 
only a limited range of light source directions stan- 
dard photometric stereo is ill-conditioned. The work 
also exploits the ability of neural networks to do non- 
parametric functional approximation and to “learn” 
the required mapping between input space and the cor- 
responding surface orientation. Data obtained from a 
calibration sphere are used to train the network. As 
with both previous non-parametric, empirical imple- 
mentations [6, 91, no explicit assumptions need to be 
made either about light source directions or about the 
functional form of surface reflectance. 

The particular neural network approach described 
uses a radial basis function (RBF) neural network and 
the orthogonal least squares (OLS) learning method 
described in [14]. Further, we continue to exploit the 
redundancy inherent in photometric stereo to deter- 
mine a local confidence estimate. This is achieved by 
training a two distinct neural networks. The first pre- 
dicts the intended output (surface normal) from the 
three most significant inputs determined by PCA. The 
second inversely predicts the three inputs from the es- 
timated output (surface normal). The difference be- 
tween the actual input and the inversely predicted in- 
put is used as the confidence estimate. This helps to 
detect local regions where photometric stereo fails due 
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to cast shadow or significant interreflection. Experi- 
ments on real data are described. 

2 Photometric Stereo 
A standard geometry for shape from shading is 

assumed. That is, let the object surface be given ex- 
plicitly by z = f(z, y) in a right-handed Euclidean 3D 
scene coordinate system, with the positive Z direction 
pointing to the viewer. Image projection is assumed to 
be orthographic with the 2D image XY axes coincident 
with the 3D scene XY axes. Let a (unit) surface nor- 
mal vector at any surface point be [nl, n2, n3]. Then 
an image irradiance equation can be written as 

E@, Y) = R(n1,nz, n3) (1) 

where E z, y) is the image irradiance and R(nl,n2,n3) 

mal, [nl, n2, n3] ,  to represent surface orientation. A re- 
flectance map combines information about surface ma- 
terial, scene illumination and viewing geometry into a 
single representation that determines image irradiance 
as a function of surface orientation. When using the 
surface normal, [nl, n2, n3], to represent surface orien- 
tation, it may appear that there are three unknowns to 
determine. But, there are only two since we have the 
a priori constraint that the length of the normal vec- 
tor is one. This constraint is not used immediately but 
does play a role in the neural network implementation. 

Photometric stereo uses multiple images obtained 
under the identical geometry but with different condi- 
tions of illumination. With p light source directions, p 
images, and hence p equations, are obtained 

is the re k ectance map, defined using the surface nor- 

With p > 2,  the p image irradiance measurements, 
El, Ea, . . . , Ep, generally overdetermine the local sur- 
face orientation at  each point, (z, y), since surface ori- 
entation only has two degrees of freedom. But, if all 
directions of illumination are nearly collinear, as will 
be the case here, the problem can be ill-conditioned. 

Ill-conditioning is dealt with by choosing p large 
and by using PCA of the resulting p image irradiance 
measurements as a preprocessing technique to extract 
a reduced dimensionality subspace to use as input for 
photometric stereo. 

For the case of Lambertian reflectance, (2) is a 
linear set of equations that can be written as 

where L is a p x 3 matrix whose ith row is a vector 
that points at light source i and that has magnitude 
proportional to the (relative) strength of light source i ,  
i = 1 , 2, . . . , p .  One could use a variety of techniques to 
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“solve” (3) for [nl, 712,7231. For example, singular value 
decomposition (SVD) can be used to  determine the 
effective rank of L, as well as the standard least squares 
best solution to (3). The SVD of L can be interpreted 
as the determination of linear combinations of light 
source directions that approximate (3) as a reduced 
dimensionality linear problem of equivalent signal to  
noise ratio. 

Via (2), we accept the fact that the photometric 
stereo problem is, in general, non-linear. This non- 
linearity is represented using a neural network. At 
the same time, there is a similarity in that PCA is 
used as a linear data preprocessing technique, both to  
decorrelate the image irradiance measurements and to  
reduce the dimensionality of the non-linear problem to 
be solved to  one of hopefully equivalent signal to  noise 
ratio. 

It should be noted that some formulations of pho- 
tometric stereo, including the original [3 , allow the 
material’s bidirectional reflectance factor (I i.e., albedo) 
also to vary spatially. With varying albedo, there 
are three unknowns, two for surface orientation and 
one for albedo. Solutions to (2) or (3) need not ex- 

licitly enforce the constraint that the normal vector, 
nl,n2,n3], is of unit length. Under appropriate as- 

sumptions, the length of the solution to  2) or (3) can 
be related to albedo. Here, constant albe o is assumed 
so that the problem, as defined, remains overdeter- 
mined locally. We can then exploit the redundancy 
inherent in the image irradiance data to  determine a 
local confidence estimate. This is key to  detecting re- 
gions of cast shadow and interreflection. 

6 
P 

3 Principal Components Analysis 

Principal components analysis (PCA) is a classi- 
cal technique in multivariate statistical data analysis. 
The basic idea is to  describe the dispersion of an ar- 
ray of n points in a pdimensional space via a new set 
of orthogonal linear coordinates, called the principal 
components, determined so that the principal compo- 
nents are mutually uncorrelated and so that the sam- 
ple variances of the n points are ranked in decreasing 
order of magnitude with respect to  these new coordi- 
nates. PCA is an invertible coordinate transformation 
that captures no more (or no less) information than 
was originally present. 

Algebraically, PCA involves finding the eigenval- 
ues and eigenvectors of the sample covariance matrix. 
(A variant of standard PCA uses the sample correla- 
tion matrix instead . A covariance matrix is symmet- 

an orthogonal set. The (normalized) eigenvectors de- 
fine the new set of coordinates axes (i.e., the princi- 
pal component axes). Since PGA does remove correla- 
tion from data coordinates (in a pdimensional space), 
it does have application to  dimensionality reduction, 
given sample data with significant correlation. Di- 
mensionality reduction typically is achieved by simple 
elimination of lower order principal components. Ad- 
ditional data reduction is possible via re-quantization. 
since, in a fixed point, finite precision, implementa- 
tion, it is possible to  allocate the number of bits-per- 
component differentially to contribute most to overall 

ric and positive de B nite so that its eigenvectors form 

problem accuracy. The analogy is to FM stereo ra- 
dio and to  NTSC colour video. In FM stereo, left 
and right audio channels are linearly transformed into 
sum and difference components. Similarly, in NTSC 
colour video, three RGB colour video channels are lin- 
early transformed into the standard YIQ components. 
In both cases, owing to  the high degree of correlation 
in the original representations, differential bandwidth 
can be allocated to the transformed components re- 
sulting in significant data compression. With p di- 
rections of illumination that are nearly collinear, one 
expects a high degree of correlation between images. 
I t  is because of this that PGA is helpful. 

PCA is implemented as follows. First, calculate 
the p x p covariance matrix, K ,  using sampled object 
points commonly illuminated in each of the p input im- 
ages. Second, determine the normalized eigenvectors, 
q5k,  and associated eigenvalues, Ab, of the covariance 
matrix, K ,  IC = 1 , 2 , .  . . , p .  The normalized eigen- 
vectors define a new, orthonormal basis for pspace. 
Let @ be the p x p matrix whose columns are q5k, 
k = 1 , 2 , .  . . , p .  Let [El, E2, E3,. . . , Ep] be the p-tuple 
of image irradiance measurements from a given object 
point. PCA defines a new ptuple ,  denoted here by 
[AI,A~,A~,...,A~], where 

( denotes matrix transpose). That is, the matrix ip 
determines the coefficients required to  represent the 
given [El, E2, E3,. . . , Ep] in terms of the new basis, 
q5k, lc = 1 , 2 , .  . . ,p .  For each of n sample ptuples, 
one obtains a corresponding [AI, Az, As,. . . , Ap]. The 
kth principal component, viewed as a data set, is 
the set of all n values of the lcth coordinate of 
[AI, Az, A3,. . . , Ap]. The variance of the kth principal 
component is equal to  the corresponding eigenvalue, 
Xk. The total variance is given by the trace of the 
covariance matrix, K ,  (or equivalently by the sum of 
the p eigenvalues). Thus, the proportion of the total 
variance accounted for by principal component k is 

(5) 

Given an estimate of the signal to noise ratio, one 
could predict how much of the total variation is due 
to  signal and how much is due to noise. This would 
provide some guidance as to  how many principal com- 
ponents are significant. In the absence of knowledge 
about measurement noise, the analysis still reveals how 
much of the total sample variance is being accounted 

three most significant principal components for sub- 
sequent analysis. Let & be the p x 3 matrix whose 
columns are q 5 k ,  IC = 1,2 ,3 .  The 3-dimensional sub- 

for. Suppose, as is done here, one chooses to retain the 
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space selected is 

The proportion of the total variance accounted for is 

x;=1 xi c;=l xi 
4 NN Functional Approximation 

4.1 
Neural networks are attractive for non-parametric 

functional approximation. A radial basis func- 
tion (RBF) neural network is one choice suitable 
for many applications. In particular, it has been 
widely used for strict interpolation in multidimen- 
sional spaces [15, 161. It is argued that RBF neural 
networks often can be designed in a fraction of the 
time it takes to train standard feed-forward networks. 
They are claimed to work well when many training 
vectors are available. 

RBF networks represent non-linearity via the 
choice of basis functions. A Gaussian isn’t the only 
choice of radial basis function for RBF networks but 
it is the choice widely used and the one used here. 
One common learning algorithm for RBF networks is 
based on first randomly choosing data points as RBF 
centers and then solving for the optimal weights of the 
network. Performance, however, critically depends on 
the chosen centers. In practice the centers often are 
chosen to be an arbitrary selected subset of the data 
points. This selection mechanism typically is unsat- 
isfactory. The resulting network may perform poorly, 
because the centers do not suitably sample the input 
data, or it may have excessive size, if a very large num- 
ber of centers is used. 

An alternative learning procedure is based on an 
orthogonal least squares (OLS) method [14, 1 6 .  Of 
course, the performance of an RBF network stil 1 crit- 
ically depends on the chosen centers. Because a fixed 
center corresponds to a given regressor in a given re- 
gression model, the selection of RBF centers can be 
regarded as a problem of subset model selection. The 
OLS method can be employed as a forward regression 
procedure to select a suitable set of centers (regres- 
sors) from a large set of candidates. At each step of 
the regression, the increment to the explained variance 
of the desired output is maximized. 

The learning procedure adopted here is based on 
the above OLS learning method. It chooses radial ba- 
sis function centers one by one in a systematic way 
until an adequate network has been constructed. The 
algorithm has the property that each selected center 
maximizes the increment to the explained variance of 
the desired output while remaining numerically well- 
conditioned. 

With this learning procedure, two RBF networks 
are trained using input/output data from a calibra- 
tion sphere. Here, we use reduced dimensionality data 

RBF Networks and OLS Learning 

preprocessed by PCA as described in section 3. Many 
training vectors are available since data from the cali- 
bration sphere are dense and include all possible visible 
surface normals, [n l ,  722,  ng]. Each RBF network used 
consists of two layers, (i.e., a hidden layer of P neu- 
rons and an output layer of 3 neurons), as shown in 
Figure 1. 

Figure 1: Radial Basis Function Neural Network 

The learning procedure builds an RBF neural net- 
work one neuron at a time. Neurons are added to the 
network until the sum-squared error falls beneath an 
error goal or a maximum number of neurons has been 

spread constant of the radial basis function be large 
enough that the neurons respond to overlapping re- 
gions of the input space, but not so large that all the 
neurons respond in essentially the same manner. Once 
learning is complete, that which has been learned is 
represented by the weights connecting each RBF neu- 
ral network unit. The resulting network generalizes 
in that it predicts a surface normal, [nl, 122, n3],  given 
any triple of input values, [ A I ,  A2, A3]. The resulting 
network trained using the calibration sphere can then 
be used to estimate the surface orientation of other 
test objects. 

4.2 A 2nd Network Estimates Confidence 

The RBF neural network trained as described 
in section 4.1 necessarily predicts a surface normal, 
[ n ~ ,  nZ,n3],  for any input triple, [A l ,Az ,A3] ,  whether 
or not that triple derives from a point on the cali- 
bration sphere (or other test object with similar re- 
flectance properties). Thus, it is valuable to have some 
measure to help segment input values for which the 
estimated surface normal can be believed with confi- 
dence from input values for which the estimated sur- 
face normal is suspect. Nothing in the training of the 
network in section 4.1 enforces the constraint that the 
surface normal is a unit surface normal. One idea is 
to use the length of the surface normal, [n1, 122, n3] ,  
to define a confidence measure. We have found a 
better idea to be the simultaneous training of a sec- 
ond network, during calibration, to inversely predict 
the input, [ A I ,  A2, A31 from the estimated output, 
[nl, 122, n3].  Comparison between the actual input and 

used). In i earning, it is important that the so-called 
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the inversely predicted input then serves as a suitable 
confidence estimate. 

Confidence estimation is required to  separate ob- 
ject from background. It also is required to  detect 
regions of cast shadow and significant interreflection. 
Cast shadows and interreflection do not arise with a 
calibration sphere or with any other single convex ob- 
ject. But, they do arise with multipleobjects and with 
objects that are not convex. 

The architecture for the two step RBF network is 
shown in Figure 2. As mentioned, both component 
networks are trained during calibration. During train- 
ing, each normal vector input to the inverse network 
necessarily is a unit normal. If the 3D subspace from 
the calibration sphere is input to  this two step net- 
work, the output of the second step, which we call the 
resynthesized input subspace, should be very similar 
to the original input. However, if an impossible triple 
(i.e., one that could not have arisen from the calibra- 
tion sphere) is input, we expect the resynthesised input 
subspace to be quite different since the resynthesized 
values necessarily correspond to points on the calibra- 
tion sphere. 

sequentially by moving a single light source. Position- 
ing of the light source is controlled via motion stages 
on the optical bench. 

Two objects are used in the experiments reported. 
One is a pottery sphere, used for calibration purposes, 
and the other is a pottery boy face. In this case, both 
objects are made of the same material with the same 
reflectance properties. No particular assumptions for 
the surface reflectance or light source directions are 
used or needed for the experiments. The pottery boy 
face was mounted on a rotational motion stage. Dif- 
ferent test images were acquired from the same view- 
point and illumination but different rotations of the 
boy face. The configuration of the moving light source 
used in this experiment is shown in Figure 3. Seven 
light source directions were used, each differing from 
its neighbours by about 2 degrees, as shown in Fig- 
ure 3. 

'I 

RBF 

"1 -n2 

-n3 -nl -Ai 

-Ai 

-Ai 

calibration 
I J-7 sphere or 

test object 

Direction of Light Source 

aob=Z [degl boc=2 [degl aod=2 [degl doe=Z [degl 
aof=Z[degl fog=2[degl 

Figure 3: Configuration of Moving Light Source 

Figure 2: Two-step RBF Neural Network 

For each point on a test object, the triple 
[ A I ,  A2, As] is input to  the first network. The length 
of the estimated output, [nl ,  n2,n3], is normalized to  
one rior to  using it as input to the second network. 
Let PA:, A;, A;] be the resynthesized input subspace 
estimated by the second network. Let 

d = d ( A 1  - A:)2 + (A2 - A$)2 + (Ag - A;)2 (7) 

The larger the value of d,  the larger is the deviation of 
the test point from a point that could have arisen on 
the calibration sphere. 

5 Experiments 

5.1 Experimental Setting 

A calibrated imaging facility (CIF) has been de- 
veloped at the UBC Laboratory for Computational In- 
telligence (LCI) to  control both scene parameters and 
conditions of imaging. It is based on an optical bench 
with mounting hardware for controlled positioning and 
motion of cameras, light sources and test objects. The 
current work uses multiple images of a scene acquired 

5.2 Calibration 

Calibration measures reflectance data using an ob- 
ject of known shape. A sphere is a good choice because 
it is convex, thus eliminating interreflection, because 
it is easy to  dead reckon local surface orientation ge- 
ometrically from the object silhouette and because it 
spans all possible visible surface normal vectors. De- 
tails of the calibration procedure used are described 
elsewhere [6 ,  91. 

5.3 Results 

For PCA, the seven 512x512 input images were 
subsampled every 4 pixels. In one example, this re- 
sulted in about 3800 objects points. The covariance 
matrix, K ,  its eigenvector matrix, Qi, and eigenvalues, 
A t ,  are shown in Table 1. One can verify that the sum 
of the diagonal elements of K and 0 are equal (to 
within round-off error). The most significant principal 
component accounts for about 98% of the total vari- 
ance. Inspection of $ 1 ,  the first column of 0 ,  shows 
that the corresponding eigenvector has strictly posi- 
tive coefficients that are approximately equal in value. 
Thus, the first principal component is (approximately) 
the average of all the seven input images. This is a kind 
of signal averaging that contributes to  noise reduction. 
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(b) Plot of (Ai,Az,A3) 

Figure 4: 3D plots of ( E l ,  Ez ,  E3) and (Al1A2,A3)  

The second most significant principal component ac- 
counts for about 1% of the total variance. Inspection 
of dZ, the second column of @, shows that the corre- 
sponding eigenvector has coefficients that sum approx- 
imately to  zero. Thus, the second principal compo- 
nent is (approximately) a difference image of (weighted 
combinations of) the seven input images. It is hard 
to argue that the third (or any larger) principal com- 
ponent accounts for any significant proportion of the 
total variance. This is not unexpected, given that the 
overall problem has only two degrees of freedom. Nev- 
ertheless, the third principal component is retained in 
the subsequent analysis. Arguably, it plays the role of 
a kind of checksum, essential to  distinguish legitimate 
inputs [El ,  Ea, . . . , E ] from those either not part of 
the test object or affected by cast shadows or inter- 
reflection. 

To further illustrate, a 3D plot of (E l ,  Ea, E3) 
for the calibration sphere is shown in Figure 4(a). 
In this figure, points are concentrated about a line 
demonstrating the high degree of correlation. Plots 
of other sub-selected triples, (Ei,Ej , E k ) ,  give similar 
results. The 3D plot of the corresponding ( A I ,  A z ,  A3) 
is shown in Figure 4(b). Significant decorrelation has 
been achieved. 

Values from the calibration sphere, (A1 , A z ,  A3), 
and their corresponding, dead reckoned surface nor- 

mal coordinates, ( ~ 1 1 , 1 2 2 ,  n3), were used as the inputs 
and outputs, respectively, for training the first neu- 
ral network. The role of input and output is reversed 
when training the second neural network. Thus, the 
number of input and output units for each network is 
three. Overall, the training set used 600 points on the 
calibration sphere. Matlab RBF neural network soft- 
ware was used, as described in section 6 of the Matlab 
neural network toolbox user’s guide [17]. In general, 
both the mapping from ( A I ,  A z ,  A3) to  (711, 122,123) and 
the inverse mapping from (121 , nz, 713) to (A1 , A2, A3) 
are non-linear. For the first network, iterative learning 
proceeded for 50 epochs (i.e., until the number of hid- 
den units became SO), while for the second network, 
iterative learning proceeded for 100 epochs. The rea- 
son for the difference relates to generalization. We are 
more willing for the first network to generalize to esti- 
mate a surface normal. On the other hand, given that 
the second network is being used as a validity check, 
we are less willing to have it generalize. 

One needs also to  consider the dynamic range of 
neural network inputs and outputs. For visible sur- 
face points, -1 < ni < 1, i = 1,2,  and 0 < 123 < 1. 
With 8 bit-per-pixel input images, 0 5 E; 5 255, 
i = 1 , 2 , 3 ,  . . . , 7 .  The dynamic range of the corre- 
sponding Ai will, of course, be different. As mentioned 
above, one can differentially consider the number of 
bits to allocate per principal component. This was not 
done here. In RBF neural network learning, the spread 
constant of the radial basis function should be much 
larger than the minimum distance and much smaller 
than the maximum distance between input vectors. 
Given the expected range of values for A; and nil 
i = 1 , 2 , 3 ,  the spread constant for the first network 
was set to 150 and the spread constant for the second 
network was set to  1. The learning states for the two 
networks are shown in Figures 5 and 6, respectively. 
Learning was effectively achieved using the 600 points 
on the calibration sphere. 

Once neural network learning is complete, the re- 
sulting networks can be applied to  the test object im- 
ages. Two examples are shown, called boy-1 and boy- 
2. For boy-1, the face is oriented directly towards 
the viewer. Figure 7-(a) shows one of the seven in- 
put images. Figures 7-(b) and 7-(c) show the esti- 
mated surface orientation, represented as slope and 
aspect. Figure 7- b) linearly encodes the slope angle, 

vector pointing to the viewer) as a gray value in the 
range black (e = 0) to  white (e = ~ / 2 ) .  Figure 7- 
(c) plots the aspect angle (i.e., the projection of the 
surface normal onto the XY plane) as a short line seg- 
ment. (To avoid clutter, the aspect angle is plotted for 
every fourth point in z and y.) Figure 7-(d) shows the 
value of the confidence estimate d ,  encoded as a gray 
level. Bright values corresponds to points in the image 
where confidence in the estimated surface orientation 
is lowest. As can be seen, bright points correspond to 
areas, near occluding boundaries, affected by shadow 
and to  locally concave areas affected by interreflection. 
Figures 8 shows results for the boy-2 example. Boy-2 
is the same object rotated with respect to the boy-1 
example. 

N o  quantitative analysis of the results has been 

e ,  (i.e., the angle \ etween the surface normal and the 
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Tlaining tor 49 Epochs 

IO3: 

t f 

Figure 5: Learning 1: ( A I ,  Az, A3) to  ( n l , n z ,  123) 

Training for 99 Epffihs 
10’ 

Figure 6: Learning 2 for ( 1 2 1 ,  722,123) to ( A I ,  A2, A3) 

performed since the true shape of the boy face is not 
known. Both the boy-1 and boy-2 results are qualita- 
tively correct, except in areas where the value of the 
corresponding d is large. The results are of comparable 
accuracy, in areas of common coverage, to other im- 
plementations of photometric stereo. One advantage 
of the current approach is clear. Because the illumina- 
tion directions all are nearly collinear with the viewing 
direction, there are relatively few areas where the esti- 
mation of surface normal is affected by shadow. Inter- 
reflection and shadows near occluding boundaries do 
lead to large values of d. In these cases, the first neural 
network cannot be expected to be correct because it 
is encountering input values well outside the space of 
inputs covered in training. The second network thus 
provides an essential check on the confidence to  attach 
to the estimated surface normal. Conversely, when d 
is small, there is reason to be confident in the estimate 

of surface orientation. 
It might be argued that PCA would not needed 

if the neural network was given all seven image irra- 
diances, (El,&,. . .,E7), as input. It would then be 
the network’s job to  learn, via training, whatever sig- 
nal averaging and decorrelation is appropriate. In an- 
other experiment, direct learning of the mapping of 
(El,E2,. . .,&) to ( 1 2 1 , 1 2 2 , 1 2 3 )  was explored, again us- 
ing data from the calibration sphere. Experimentation 
was not comprehensive but did confirm expectations. 
The results, in terms of complexity of the network, 
time to learn and accuracy of the result, all were sig- 
nificantly poorer. It does seem that PCA is an effective 
preprocessing step prior to  neural network training. 

6 Conclusion 
A new approach to  implementation of photomet- 

ric stereo has been described. Multiple images are ac- 
quired using several, nearby positions of a single illu- 
minant. In the configuration developed, all directions 
of illumination are close to  the viewing direction and 
thus are nearly collinear. This has the potential advan- 
tage of extending the domain of practical application 
of photometric stereo, especially to  tasks where the 
entire sensing system, including light sources, needs to 
be as physically compact as possible, 

The usefulness of more than the theoretical mini- 
mum number of images has been demonstrated. Given 
a light source moving in a (periodic) trajectory, it 
would be possible to  exploit many more than p = 7 
images. Principal components analysis (PCA) is an 
effective linear preprocessing technique to extract a 
reduced dimensionality subspace prior to  non-linear 
functional approximation via a neural network. The 
particular implementation described uses a radial ba- 
sis function (RBF) neural network and the orthogo- 
nal least squares (OLS) learning method. This was 
sufficient both to learn and to represent the mapping 
between input subspace and surface normal. 

The implementation continues to  exploit the abil- 
ity of photometric stereo to  overdetermine the solu- 
tion locally. This is achieved by training two neural 
networks. The first predicts the intended output (sur- 
face normal) from the given input. The second in- 
versely predicts the input from the estimated output 
(surface normal . Comparison between the real input 

fidence estimate. The local confidence estimate helps 
to  detect regions of cast shadow and significant inter- 
reflection. At the moment, the possibility of spatially 
varying albedo is not considered. There is no reason, 
in principle, not to include spatially varying albedo in 
the problem formulation. This creates new problems 
for calibration. On the other hand, if some assumption 
is made about the form of the object’s bidirectional 
reflectance distribution function (BRDF), for example 
that it is spectrally separable, then the possibility ex- 
ists to  synthesize the effect of spatially varying albedo 
within the current method of calibration. 

Finally, it is valuable to  stress that the entire ap- 
proach is empirical in that no explicit assumptions 
are made about light source directions or surface re- 
flectance. It is sufficient that the calibration sphere 

and the inverse 1‘ y predicted input is used as the con- 
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used in training and the subsequent test objects be 
viewed under the same pattern of illumination and 
be made of the same material (i.e., have the same re- 
flectance properties). Both principal components anal- 
ysis and neural network functional approximation are 
used here as non-parametric, empirical techniques. 
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1 1.5058 1.4394 1.4006 1.4009 1.4003 1.4372 1.4288 
1.4394 1.3937 1.3712 1.3337 1.3224 1.3795 1.3731 
1.4006 1.3712 1.3687 1.2887 1.2664 1.3462 1.3423 

9 =z 

K = lo3  x 1.4009 1.3337 1.2887 1.3209 1.3303 1.3412 1.3329 
1.4003 1.3224 1.2664 1.3303 1.3531 1.3403 1.3336 I 1.4372 1.3795 1.3462 1.3412 1.3403 1.3862 1.3874 

0.3799 0.2899 0.2344 0.0893 -0.033i 0.6855 -0.4875 
0.3709 0.6472 0.2223 -0.4604 0.1362 -0.3658 0.1728 
0.3694 -0.3248 0.2213 -0.1585 -0.2822 0.3555 0.6913 

L 1.4288 1.3731 1.3423 1.3329 1.3336 1.3874 1.4073 

r 0.3957 -0.0392 0.2414 0.7499 0.3628 -0.2608 0.1470 1 

0.3693 -0.6235 0.1592 -0.4020 0.2612 -0.2233 -0.4120 
0.3801 0.0056 -0.2307 0.1699 -0.7745 -0.3521 -0.2228 
0.3796 0.0355 -0.8426 -0.0459 0.3179 0.1671 0.1168 

[A, . . .A,] = I O 3  x [ 9.5662 0.1166 0.0398 0.0084 0.0024 0.0012 0.0009 ] 

Table 1 : Example covariance matrix, eigenvector matrix and eigenvalues 

(a) Boy-1 sample image (b) Boy-1 slope (c) Boy-1 aspect 

Figure 7: Boy-1 example 
(d) Boy-1 confidence 

(a) Boy-2 sample image (b) Boy-2 slope (c) Boy-2 aspect 

Figure 8: Boy-2 example 
(d) Boy-2 confidence 
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